Induction of protective immunity against MHC class I-deficient, HPV16-associated tumours with peptide and dendritic cell-based vaccines.
نویسندگان
چکیده
Downregulation of MHC class I expression on the cell surface is a common mechanism by which tumour cells, including cervical carcinoma, can escape the T cell-mediated anti-tumour immunity. This downregulation represents an obstacle for the efficacy of anti-tumour vaccines. In this study, we investigated the efficacy of prophylactic peptide and peptide-pulsed dendritic cell-based vaccines in a murine model of experimental MHC class I-deficient tumours (TC-1/A9), expressing E6/E7 oncogenes derived from HPV16, and compared the efficacy of particular vaccination settings to anti-tumour protection against parental MHC class I-positive TC-1 tumours. Peptide vaccine based on the 'short' peptide E749-57 harbouring solely the CTL epitope and co-administered to the C57BL/6 mice with CpG oligodeoxynucleotide (CpG ODN) 1826 was effective against MHC class I-positive but not -deficient tumours, while the 'longer' peptide E744-62 (peptide 8Q, harbouring CTL and Th epitopes)-based vaccines were also effective against MHC class I-deficient tumours. We have compared the adjuvant efficacies of two CpG ODN, CpG ODN 1826 and CpG ODN 1585. The 8Q peptide immunisation combined with CpG ODN 1585 inhibited growth of the TC-1/A9 tumours more effectively as compared to CpG ODN 1826. Further, we investigated the efficacy of cellular vaccines based on ex vivo cultured dendritic cells pulsed with either E749-57 or E744-62 peptides and matured with CpG ODN 1826. Unlike in the peptide immunisation setting, treatment with dendritic cells pulsed with a 'short' peptide resulted in the tumour growth inhibition, albeit weaker as compared to the immunisation with the longer peptide. Our data demonstrate that peptide and dendritic cell-based vaccines can be designed to elicit protective immunity against MHC class I-deficient tumours.
منابع مشابه
Immunization with MHC class I-negative but not -positive HPV16-associated tumour cells inhibits growth of MHC class I-negative tumours.
Loss or downregulation of MHC class I molecules on tumour cells is a common mechanism by which tumours can escape from T-cell mediated immune responses. In this study we have investigated the immunologic crossreactivity between murine tumour cell lines expressing human papilloma virus (HPV) 16-derived E6/E7 oncoproteins with distinct surface expression of MHC class I molecules. The aims of this...
متن کاملNK1.1+ cells are important for the development of protective immunity against MHC I-deficient, HPV16-associated tumours.
Loss or downregulation of MHC class I molecules on tumour cells is a common mechanism by which tumours can escape T-cell mediated immune responses. In this study, we examined the role of different immune cell lineages in the development of immunity against tumours of the same aetiology but with different MHC class I expression. In vivo depletion of CD8+ cells, but not of CD4+ or NK1.1+ cells in...
متن کاملImmunization with human papillomavirus type 16 (HPV16) oncoprotein-loaded dendritic cells as well as protein in adjuvant induces MHC class I-restricted protection to HPV16-induced tumor cells.
Human papillomavirus (HPV) E6 and E7 oncoproteins are attractive targets for T-cell-based immunotherapy of cervical cancer. In this study, we demonstrate that dendritic cells (DCs) pulsed with HPV16 E7 protein are not only recognized in vitro by E7-specific CTLs but also elicit E7-specific CTL responses in vivo, associated with protection against a challenge with syngeneic HPV16-induced tumor c...
متن کاملDepletion of T(reg) cells inhibits minimal residual disease after surgery of HPV16-associated tumours.
It is generally accepted that T regulatory cells (T(reg) CD4(+)CD25(+)Foxp3(+)) play an important role in the suppression of tumour immunity. We examined the impact of T(reg) cell depletion with anti-CD25 antibody as adjuvant therapy in the treatment of minimal residual disease after excision of murine HPV16-associated tumours. We found that the depletion of T(reg) cells inhibited growth of the...
متن کاملInduction of protective CTL immunity against peptide transporter TAP-deficient tumors through dendritic cell vaccination.
A large proportion of human cancers show deficiencies in the MHC class I antigen-processing machinery. Such defects render tumors resistant to immune eradication by tumoricidal CTLs. We recently identified a unique population of CTL that selectively targets tumor immune-escape variants through recognition of MHC-presented peptides, termed TEIPP (T cell epitopes associated with impaired peptide ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 36 3 شماره
صفحات -
تاریخ انتشار 2010